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• Processor architecture overview

• Notes about MCDRAM in cache-mode

• Preparing to optimize your application for KNL

• Target Science

• Scaling and Communication

• Memory and cache footprint analysis

• Creating a test case

Discussion topics
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In te l  Xeon Phi  
“Knights  Landing”

Processor architecture overview
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KNL Processor Architecture
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KNL Tile Architecture
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KNL Tile Frequencies and Turbo Mode

• Two turbo tile frequencies implemented

• “All tiles active” turbo, +100 MHz

• “Single tile active” turbo, +200 MHz

• Two below-base frequencies

• Heavy AVX instructions, -200 MHz

• Under some conditions -100 MHz also possible

• Xeon Phi 7250 tile frequencies

• 1.6 GHz single tile turbo

• 1.5 GHz all tiles turbo

• 1.4 GHz base frequency

• 1.3 GHz

• 1.2 GHz AVX
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Xeon Phi “Knights Landing” Compatibility
• Runs existing Xeon x86 64-bit executables

• Linux commands

• ISV applications

• Applications built for Xeon processors

• Existing Xeon-targeted libraries will work

• If library is not a critical compute component, recompiling not needed

• Intel 16+ MKL has AVX-512 support enabled at run time

• Xeon executables can take advantage of all KNL features

• Except AVX-512 (requires recompiling)

• Except moving selected data to MCDRAM in flat mode (requires source changes)

• Optimal instruction selection and organization is different

• Recompiling will probably improve performance

• HPGMG-FV - High-Performance Geometric Multi-Grid benchmark

• Run on 64 KNL nodes, 64 cores per node, quad/cache

• CCE 8.5, craype-sandybridge: 1.264 billion DOF/s

• CCE 8.5, craype-haswell: 1.447 billion DOF/s

• CCE 8.5, craype-mic-knl: 1.866 billion DOF/s
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• DDR - Double Data Rate

• Refers to the 6 channels of DDR4-2400 DIMM main 
memory

• MCDRAM - Multi-Channel DRAM

• High-bandwidth on-package memory

• MCDRAM Cache

• MCDRAM configured as a last-level memory-side 
cache

• Flat MCDRAM

• MCDRAM configured as addressable memory

• User-visible as a NUMA node with memory but no 
cpus

• EDC - Embedded DRAM Controller

• Interface to MCDRAM, 8 controllers per processor

• Tile - A logic block including two cores sharing an L2 
cache

• Includes an on-chip mesh interface and CHA

• CHA - Caching Home Agent

• Per-tile block which manages cache coherence (L2 and 
MCDRAM)

• MC or IMC - Integrated (DDR) Memory Controller

• OPIO - On-Package I/O

• Interface from KNL processor to MCDRAM

• HBM - High Bandwidth Memory

• HBM is a memory hardware technology developed by AMD and 
partners

• Sometimes used informally to refer to flat MCDRAM on KNL

• VPU - Vector Processing Unit

• AVX-512 SIMD execution unit, 2 per core

• SNC - Sub-NUMA Cluster

• Processor mode which divides memory capacity and bandwidth 
into 2 or 4 NUMA nodes per memory type

• Also divides the cores and MCDRAM cache among the DDR 
NUMA nodes

Acronym and Terminology Reference
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Core to Core: Comparing Xeon Phi to Xeon

Feature Haswell Knights 

Landing

How KNL compares

Number of cores 16 68 A lot more cores (4X)

Core frequency 2.3 to 3.6 GHz 1.4 to 1.6 Lower frequency (2X)

Serial scalar rate Lorenz=3048 874 3.5X slower

L1 cache size 32KB 32KB Same

L1 load bandwidth 2X 32 bytes 2X 64 bytes Higher per cycle (2X)

L1 load rate 7 billion/sec 3 billion/sec Same per cycle, but lower clock

L2 cache size 256KB 1MB/2 cores Much larger (2X per core)

L2 bandwidth 64 bytes/cyc 64 bytes/cyc Same per cycle, but lower clock

L3 cache size 2.5 MB/core N/A Many kernels bandwidth limited
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Node to Node: Comparing Xeon Phi to Xeon

Feature Haswell Knights Landing How KNL compares

Number of cores 32 68 More cores (2X)

DDR 8 channels 6 channels 25% less bandwidth, capacity

MCDRAM N/A 8 channels, 16 GB Unique feature

Memory Bandwidth ~120 GB/s 490 GB/s MCDRAM rate (4X)

FP Peak (vector) ~1.2 TF/s ~2.6 TF/s Higher peak (2X)

FP Peak (scalar) 294 GF/s 326 GF/s Slightly higher

Instruction Peak 387 Ginst/s 190 Ginst/s Half peak rate

Package Power 270 W 215 W Less power
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A c loser  look at  
us ing MCDRAM 
in  cache mode
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MCDRAM
• MCDRAM is a configurable memory that is smaller than main memory but has 

much higher bandwidth

• Can be configured as a “memory cache”

• Can be configured at 100% explicitly managed (Flat mode)

• Can be configured 50% cache and 50% explicitly managed

• MCDRAM can sustain 300-450 GB/s of bandwidth

• KNL DRAM can sustain only about 90 GB/s

• Haswell DRAM can sustain about 120 GB/s

• When configured Flat mode the programmer must decide what goes into 
MCDRAM and what does not

• When configured as a cache, the hardware attempts to keep most recently used 
data in the cache

• However the cache is a “direct-mapped” cache
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• There are 6 memory locations that map to the same location in cache

• Assumes a 96 GB DRAM config.  Larger memory will have more 

• Cache is direct mapped, i.e., there is only 1 “way”

Basic picture of memory and a direct mapped cache

MEM MEM MEM MEM MEM MEM MEM MEM

MEM MEM MEM MEM MEM MEM MEM MEM

MEM MEM MEM MEM MEM MEM MEM MEM
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• Because the hardware is automatically bringing data into the MCDRAM, the user 
does not have to do anything to the code to start benefiting from MCDRAM

• The MCDRAM is much larger than the Haswell caches, so some structures that 
never fit before suddenly will fit

• However, there is a word of caution

Pros of using MCDRAM as a cache
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Start filling pages in memory

• OS starts to place pages that contain the variable “A” for each PE as those PEs reach 
the allocation statement

• Each page placement is more or less “random” based on when various PEs arrive at 
the allocate, and the order in which the pages were free, perhaps even by a previous 
program

PE3’s A 

PE5’s A 

PE4’s A

PE2’s A 

PE1’s A

$PE1’s A $PE4’s A $ $PE2’s A $ $PE3’s A $PE5’s A $
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Conflicts are bound to happen

• If two PE’s A are aliased to the same cache location, then thrashing may occur if 
those PEs both reuse A at “about” the same time

PE6’s A 

PE3’s A 

PE5’s A 

PE4’s A

PE2’s A 

PE1’s A

$PE1’s A $PE4’s A $
$

conflict
$ $PE3’s A $PE5’s A $



© 2019 Cray Inc.

• Any job that uses more than 16 GB/node is guaranteed to see some amount of 
cache thrashing, but how much?

• Good news:  The cache is really large, so there is a lot of potential for reuse and 
there is a relatively low probability of a bad aliasing conflict occurring

• Conflict probability is also a function of size of the data being reused

• This is why we often don’t observe this on single node runs

• Bad news:  All of these are NON-ZERO probabilities, and the dice are rolled on 
every node in the job

• As the number of nodes in the job increases, the probability that aliasing 
problems will occur approaches 100%

Cache thrashing will occur, but how often?
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• If your performance is impacted by the effectiveness of the MCDRAM cache, you 
may experience scaling problems

• This will likely show up in communication, but will be because of 
synchronization, not bandwidth or latency constraints

• Normal profiling may not point to the offending compute region

• Only a few PEs might be slow, and thus that signal could be drowned out by 
the other PEs in the job

Direct mapped cache causing scaling problems
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• Flat mode is good if your entire data set can fit into 16GB

• However if your code uses more than 16 GB of data, it may be difficult to find 
just the right arrays to place there

• Flat mode seems likely to be unforgiving if some bandwidth data does not fit

• Cache mode seems to capture reuse well on many apps

• And it requires no work on the part of the user

• But is susceptible to thrashing if important data aliases to the same location

• This becomes more likely as node counts increase

• Each mode has pros and cons

MCDRAM Usage Conclusions



© 2019 Cray Inc.

Prepar ing to  
Opt imize for  KNL
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• Identify science problems that you anticipate running on KNL

• The science problems will help focus efforts on what routines and issues are important

• Estimate how many nodes you will use during the run

• Does the code already scale this high?

• What can we say about communication

• The combination of science problem and number of nodes will allow one 
to estimate memory footprints, array sizes, and trip count sizes

• This information is critical

21

What Science do you want to run on KNL
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• How high does the code scale

• Does your code use both OpenMP and MPI?

• How many OpenMP threads can you utilize

• What is limiting your scaling?

• Communication overhead?

• Lack of parallelism on a given science problem?

• Understanding and optimizing scaling is critical

• KNL requires scaling to higher numbers of cores to achieve the same level of performance

• Scaling impacts loop trip counts, memory footprints, and more
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Scaling and communication
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• Do you expect your problem to consume a significant amount of main memory?

• Main memory is about 96 Gbytes

• Is it possible that your problem will fit into fast memory?

• Fast memory is 16 Gbytes per node

• Can be configured as a “memory cache”

• Can be configured at 100% explicitly managed

• What is the memory access pattern for the routines and loops identified as important?

• What are the trip counts in that loop nest?

• How much data is accessed?  

• How much is used more than once?
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Understanding your memory footprint is critical
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• Use all of the information about your target science problem to develop a test case that can be 
optimized

• Want that test case to be as representative as possible, but without using 100s of nodes

• Adjust time step if possible, not problem size

• Want to capture the memory footprint, bandwidth and scaling attributes but still limit run time

• Should use multiple nodes, 4-32 nodes might be ideal

• If you have communication, you want to make sure that behavior is represented in the test 
case

• You want to run on enough nodes to capture some communication and scaling 
characteristics, but few enough to allow for more rapid turn around and not burn up allocation
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Create test case that represents a real science run
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• Are you sure?  Verify

• Cray has come across many examples where performance was limited by something 
in some place that was not expected

• Use statistical profilers to determine where the time is being spent

• Are there obvious key routines using a significant percentage of run time?

• Are there key loops or code sections?

• How many routines before you hit 80% of the run time

• Is the profile different for different science problems?

• If you start heavy optimization efforts before you get a representative profile you risk 
wasting a significant amount of your time and effort
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Where is the time being spent
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• Do the loops vectorize?

• Vectorization is very important to achieving high performance rates

• Edison vectors are 4 DP words, KNL has 8 DP words

• Cannot take full advantage of functional units without vectorization

• Unlikely to take full advantage of memory bandwidth

• Scalar performance on KNL core is approximately 1/3rd the speed of a Haswell core 

• Common inhibitors

• Dependencies

• Indirect addressing may prevent vectorization or make it less efficient

• i.e.,  A(indx(i)) = 

• Function / subroutine calls

• “IF” tests inside of inner loops may slow execution and prevent vectorization

• More…
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Vectorization
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• Sometimes it is easy

• One or more loop nests are streaming through a huge amount of data

• Little to no reuse

• Sometimes it is difficult

• Some trip counts are large

• But some data are reused 

• Not obvious what the compiler did

• Not obvious if the data remains in cache

• Counters can be difficult to interpret

• Difficult to keep track of different levels of cache

• Try to run kernel using 1 or 2 fewer cores

• Adjust the number of OMP threads

• Use srun --ntasks-per-socket= option to spread mpi ranks across more sockets

• If performance per core increases, kernel may be bandwidth bound

• Try and examine trip counts and reference patterns
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How can you tell if you are memory bandwidth bound?
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• Identify the target science problem and the number of nodes you plan on using 
on KNL

• Understand your memory footprint and how to utilize MCDRAM

• Create a representative test case that runs on multiple nodes

• Verify where the time is being spent using a statistical profiler

• Vectorization and Memory bandwidth optimizations are likely to be your primary 
means of compute-based optimizations

Summary
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